

FORCESUN

Forced Circulation Solar Collectors

AR1.82CF AR2.80CF

Solar Keymark certified Factory Made system

The quality of the KIT is guaranteed by the Solar Keymark certification, an official recognition of compliance with international performance and safety standards. This guarantee offers users the certainty of a product that complies with industry regulations.

uses pumps to circulate the heat transfer fluid through solar collectors. Unlike natural circulation systems, which rely on convection, forced circulation offers superior temperature control and higher efficiency.

and even heat distribution can be achieved. This translates into greater energy efficiency and a more reliable heating system capable of meeting specific temperature requirements.

OPERATION

The operation of a forced circulation solar thermal system is based on key components that work together to optimise heat transfer. The FORCESUN solar collectors, strategically positioned to maximise solar exposure, absorb thermal energy and transfer it to the heat transfer fluid, which can be water or a specific antifreeze. Pumps, controlled by electronic control units, ensure continuous circulation of the fluid through the system, allowing precise temperature control.

A thermal storage tank, or boiler, serves as temporary storage for heated water, maintaining heat availability even during periods of low solar radiation.

Temperature sensors located both on the collectors and in the storage tank provide real-time data to the controllers to regulate the operation of the pumps, thereby optimising the energy efficiency of the system.

In addition, advanced systems can include safety mechanisms such as pressure release valves and overheating protection systems, ensuring safe and reliable operation.

Integration with auxiliary heating systems, such as gas boilers or heat pumps, makes it possible to maintain service continuity even unfavourable climatic conditions. without compromising user comfort.

High Energy Yields

The energy efficiency of ForceSun collectors is improved by an increased absorption surface combined with a thinner frame. This configuration maximises efficiency, allowing superior performance even in variable solar radiation conditions.

Elegant and Functional Design

The design of the ForceSun collectors has been studied with special attention aesthetics, using a uniformity of colour between glass, profiles and cladding. This approach ensures perfect visual integration on any type of roof, making them ideal for modern, aesthetically pleasing architectural projects.

Reliable Compression Connections

Brass compression-fittings ensure a durable seal and no solar fluid leakage.

The standard distance of 55 mm between collectors also facilitates series connection, enhancing the modularity of the system.

Solar Glass Roofing

FORCESUN collectors are equipped with a 3.2 mm thick, tempered, low-iron ESG solar single-glazing cover. This type of glass is highly resistant to hail, ensuring longevity and protection against weathering.

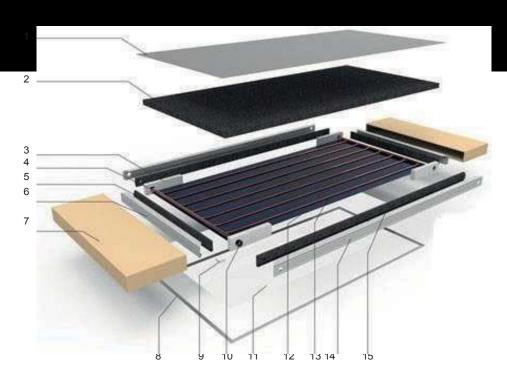
High Performance Absorber

The absorber consists of a laser-welded aluminium plate with an 8 mm diameter copper meander coil, treated with a highly selective coating. This combination ensures optimal heat absorption efficiency, increasing the overall efficiency of the solar thermal system.

Installation flexibility

Due to their design, the collectors can be installed either above or below the tiles of a flat or pitched roof. This flexibility allows for a wide variety of mounting solutions, adapting to the specific requirements of the installation site.

Availability of Installation on Different Roof Types The


installation of a forced circulation solar thermal system is compatible with wide range of roof types, making it a versatile solution for residential, commercial and industrial buildings. Solar collectors can be mounted on pitched, flat and even irregular roofs, thanks to the use of adaptable support structures that provide the optimal tilt and orientation to maximise solar radiation absorption.

On pitched roofs, FORCESUN collectors can be installed parallel to the roof surface, using brackets and supports to ensure the stability and safety of the system. In the case of flat roofs, inclined support structures are used to set the collectors at the right angle to optimise solar exposure throughout the year.

For irregular roofs or roofs with complex geometric shapes, customised solutions can be designed using special frames and brackets, allowing for harmonious integration with the building's architecture. Pitched roofs also feature dedicated solutions, with mounting options that vary according to the orientation and inclination of the pitch.

The technological and engineering aspect is not the only one to consider; aesthetic impact also plays an important role. Many manufacturers offer solar collectors with elegant and discreet designs, capable of integrating with architectural profile of the building without compromising aesthetics.

STRUCTURE AND TECHNICAL PARAMETERS OF THE FLAT-PLATE SOLAR COLLECTOR

- 0.1 101001110 100111
- 4. Collector tube
- 5. Insulation layer on the frame
- 6. Side frame
- 7.Packaging
- 8.Upper gasket 9.Corner connection 10.Rubber sealing ring
- 11. Low-iron textured tempered glass
- 12. Absorber plate
- 13. Absorber Tube

www.aryagroupspa.com

TECHNICAL DATA		AR1.82CF	AR2.80CF
GROSS LENGTH / WIDTH / HEIGHT	mm	2000*1000*95	2000*1500*95
GROSS AREA	m²	2	3
OPENING LENGTH / WIDTH / NUMBER	mm	1951*949	1951*1449
OPENING AREA	m²	1.85	2.826
ABSORBER LENGTH WIDTH / THICKNESS	mm	1951*949*0.4	1951*1449*0.4
ABSORBER AREA	m²	1.85	2.826
NET WEIGHT	Kg	35	52
FLUID CONTENT	L	1.6	2.5
COVERAGE LENGTH / WIDTH / THICKNESS	mm	1976*976*3.2	1976*1474*3.2
CONVERSION FACTOR BASED ON ABSORBER AREA	(AA)	0.805	0.783
HEAT TRANSFER COEFFICIENT A1A	W/(m²K)	3.555	3.716
TEMP. DEPENDENT HEAT TRANSFER COEFFICIENT AGA	W/(m²K²)	0.029	0.009
EFFICIENCY (η0) BASED ON GROSS AREA		0.776	
COVERING MATERIAL		Ultra-white tempered glass with low iron content	
SOLAR TRANSMITTANCE OF GLASS ROOFING	%	≥91,5	
ABSORBER MATERIAL		Aluminium	
SOLAR ABSORPTION OF THE ABSORBER [%].	%	≥92	
HEMISPHERIC EMITTANCE OF THE ABSORBER [%].	%	≤10	
ABSORBER COATING		Blue coating	
HEADER PIPE MATERIAL		Copper tube TP2	
OUTER DIAMETER/HEADER PIPE THICKNESS	mm	φ22*0.6	
UPRIGHT TUBE MATERIAL		Copper tube TP2	
LENGTH / OUTER DIAMETER / THICKNESS OF UPRIGHT TUBE	mm	φ10*0.7	
NUMBER OF UPRIGHTS		9	14
DISTANCE BETWEEN POSTS	mm	93	95.5
CONNECTOR DIMENSIONS	mm	φ22	φ22
THERMAL INSULATION MATERIAL (REAR)		Glass wool and PUR	
THICKNESS THERMAL INSULATION (REAR)	mm	46	
THERMAL INSULATION MATERIAL (SIDE)		Glass wool	
THICKNESS THERMAL INSULATION (SIDE)	mm	20	
SIDE CASING MATERIAL		6063-T5	
REAR CASING MATERIAL		Aluminised zinc plate	
SEALING MATERIAL		Structural adhesive	
MAXIMUM OPERATING PRESSURE [KPA]		800	
MAXIMUM OPERATING TEMPERATURE (°C)		186	
RECOMMENDED HEAT TRANSFER MEDIUM		Deionised water/Antifreeze fluid	