

Energy Revolution with

SOLAR TANKS

Double Serpentine

BD-200

BD-300

Double Serpentine

Optimised for Heat Pumps

SH-200

SH-300

SH-500

What is a Solar Tank?

A solar tank is a device designed to store thermal energy generated by solar panels. This type of tank allows heat to be stored during daylight hours, when solar radiation is at its highest, and then used at night or during periods of low solar radiation. Solar storage tanks are known for their efficiency and ability to integrate with various energy systems.

SOLAR TANKS

Energy Efficiency

Solar tanks offer a significant improvement in energy efficiency. This translates into reduced operating costs and a quick return on investment. Companies can benefit from a system that makes maximum of solar energy, reducing dependence on traditional energy sources.

Environmental Sustainability

Using a solar tank means actively contributing to the reduction of CO2 emissions.

This makes solar tanks an environmentally friendly choice that helps companies achieve their sustainability goals and improve their environmental reputation.

Versatility and Integration

Solar storage tanks are designed to integrate easily with various energy systems, including heat pump systems. This versatility makes them an excellent choice for a wide range of industrial and commercial applications.

DIFFERENCE BETWEEN A STANDARD TANK AND A TANK OPTIMISED FOR PDC

Storage Capacity

Optimised heat pump tanks have a higher storage capacity than standard tanks. This allows more thermal energy to be stored, ensuring a constant supply even during peak demand periods. Thermal Exchange Efficiency

The main difference between a standard tank and an optimised heat pump tank lies in the efficiency of heat exchange. Optimised tanks are equipped advanced heat exchangers that improve the transmission of energy between the tank and the heat pump, increasing the overall efficiency of the system.

Technological Compatibility

Optimised heat pump reservoirs are specifically designed to be compatible with these advanced technologies. This means they can operate at higher temperatures and pressures, ensuring optimal performance and a long service life.

The Importance of the Right Choice

When it comes to choosing between a standard and an optimised heat pump tank, it is essential to consider the specific energy needs of your company. An optimised tank may offer significant benefits in terms of efficiency and sustainability, but may require a higher initial investment.

Importance of Internal Tank Coating

The inner coating of solar water storage tanks plays a crucial role in their durability and efficiency. A high-quality coating prevents corrosion, protecting the structural integrity of the tank and ensuring that the water remains clean and safe for domestic use. Materials such as enamelled glass or stainless steel are commonly used for their excellent anti-corrosive properties and resistance to high temperatures. In addition, a well-designed lining can significantly improve the thermal performance of the tank, minimising heat loss and maximising the energy efficiency of the solar system. In summary, the choice of inner lining is crucial to optimise the functionality and longevity of solar storage tanks.

BD-200 / BD-300

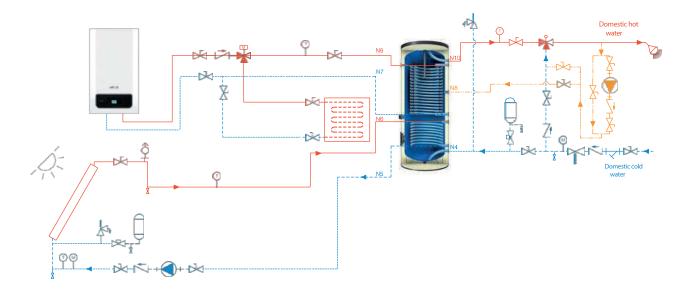
INSULATION	PU chane in accordance with EU ErP regulation 814/2013 and TS EN 12897 standards	STD/50 mm
COATING	Blueshell - Heat-insulating polyethylene cover	STD
EQUIPMENT	Thermometer (0°C- 1 20°C)	STD/Ø63
	Well s wave	STD/½" 2 pieces
	Cleaning and control flange	STD/4"
	Electrical resistance	OPS/1½"
CATHODIC PROTECTION	Magnesium anode	STD
	Electronic anode	OPS

STD: Standard equipment. OPS: OPTIONAL accessories		SH-200 / SH-300 / SH-500		
INSULATION	PU- 42 kg/sqm HCFC-free polyurethane in accordance with EU ErP regulation 814/2013 and TS EN 12897 standards STD/50 mm			
COATING	Blueshell - Heat-insulating polyethylene cover	STD		
EQUIPMENT	Thermometer (0°C- 1 20°C)	STD/Ø63		
	Well s wave	STD/½" 3 pieces		
	Cleaning and control flange	STD/4"		
	Electrical resistance	OPS/1½"		
CATHODIC PROTECTION	Magnesium anode	STD		
	Electronic anode	OPS		

Volume **200L-300L**

Upper heat exchanger Maximum heating output **41kW/h**

Lower heat exchanger Maximum heating output **55kW/h**


Maximum solar collector area **29 m2**Maximum operating temperature of the heat exchanger **110°C**

Maximum operating pressure of heat exchanger **10 bar**

Maximum domestic hot water operating temperature 95°C Maximum domestic hot water operating pressure 6 bar / 10 bar
The inside surface of the tank is enamelled according to DIN 4753-3.

TECHNICAL DATA				UNIT	BD-200	BD-300
CAPACITIES			V	lt	200	300
TYPE AND THICKNESS OF INSULATION		ØD	i	mm	PU/50	PU/50
DIAMETER		N11	ØD	mm	580	580
HEIGHT			Н	mm	1340	1860
CLEANING AND CONTROL FLANGE		N10	N1	poll.	4"	4"
CONNECTION OF THE ELECTRICAL RESISTANCE	N3	N9	N2	poll.	1½"	1½"
THERMOMETER AND SENSOR CONNECTION	N3	N8	N3	poll.	1/2"	1/2"
COLD WATER INLET CONNECTION	N2	N7	N4	poll.	3/4"	1"
INPUT/OUTPUT CONNECTIONS OF THE	н	N6	N5-N6	poll.	11/4"	11/4"
LOWER HEAT EXCHANGER (COIL)	N3					
INPUT/OUTPUT CONNECTIONS OF THE			N7-N9	poll.	11/4"	11/4"
UPPER HEAT EXCHANGER (COIL)	N1	N5				
ACS RECIRCULATION CONNECTION	NI P	N4	N8	poll.	3/4"	3/4"
ACS OUTPUT CONNECTION			N10	poll.	3/4"	1"
MAGNESIUM ANODE CONNECTION			N11	poll.	11/4"	11/4"
BLIND CONNECTION		N12	N12	poll.	11/4"	11/4"
GROSS WEIGHT			G	kg	87	104
45° TILT HEIGHT			R	mm	1460	1950

MODEL INSTALLATION DIAGRAM

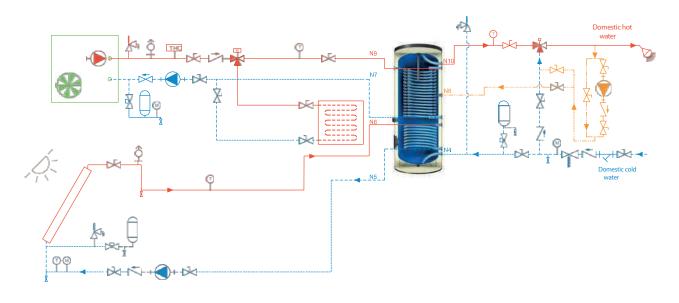
SOLAR TANKS

Volume 200L-300L-500L

Top heat exchanger Maximum heating capacity **161kW/h**

Lower heat exchanger Maximum heating output **55kW/h**

Maximum solar collector area **10 m2**Maximum operating temperature of the heat exchanger **110°C**


Maximum operating pressure of heat exchanger **10 bar**

Maximum domestic hot water operating temperature 95°C Maximum domestic hot water operating pressure 10 bar

The inside surface of the tank is enamelled according to DIN 4753-3.

TECHNICAL DATA			CODE	UNIT	SH-200	SH-300	SH-500
CAPACITIES			V	lt	200	300	500
TYPE AND THICKNESS OF INSULATION			i	mm	PU/50	PU/50	PU/50
DIAMETER		<u></u>	ØD	mm	580	580	740
HEIGHT			Н	mm	1340	1860	1845
CLEANING AND CONTROL FLANGE		N10	N1	poll.	4"	4"	4"
CONNECTION OF THE ELECTRICAL RESISTANCE		N3 N9	N2	poll.	11/2"	1½"	1½"
THERMOMETER AND SENSOR CONNECTION			N3	poll.	1/2"	1/2"	1/2"
COLD WATER INLET CONNECTION		N8	N4	poll.	1"	1"	1"
INPUT/OUTPUT CONNECTIONS OF THE		0:0	N5-N6	poll.	1"	1"	1"
LOWER HEAT EXCHANGER (COIL)	Н	07 E		F -			
INPUT/OUTPUT CONNECTIONS OF THE		N2 N6	N7-N9	poll.	11/4"	11/4"	11/4"
UPPER HEAT EXCHANGER (COIL)							
ACS RECIRCULATION CONNECTION		N1 N5	N8	poll.	1"	1"	1"
ACS OUTPUT CONNECTION		N4	N10	poll.	1"	1"	1"
MAGNESIUM ANODE CONNECTION			N11	poll.	11⁄4"	11/4"	11⁄4"
BLIND CONNECTION		N12	N12	poll.	11/4"	11/4"	11⁄4"
GROSS WEIGHT			G	kg	113	156	165
45° TILT HEIGHT			R	mm	1460	1950	1990

MODEL INSTALLATION DIAGRAM

